ON COMPLEMENTED COPIES OF c_0 **IN** L_X^p , $1 \le p < \infty$

G. EMMANUELE

(Communicated by William J. Davis)

Let (S, Σ, μ) be a not purely atomic measure space and X be a Banach space. In this note we want to show that if X contains a copy of c_0 then the usual Banach space of the Lebesgue-Bochner integrable functions L_X^p , $1 \le p < \infty$, contains a complemented copy of c_0 . Our result is similar in spirit to one obtained in [1] by Cembranos concerning the Banach space $C_X(K)$; in passing we observe that the Cembranos result has been extended in [3] to the case of ε -tensor products and then in [2] to the case of the Banach space of compact weak*-weak continuous operators.

In order to prove our theorem we need the definition of limited sets. A (bounded) subset M of a Banach space X is said to be limited if for each weak^{*} null sequence $(x_n^*) \subset X^*$ we have $\lim_n \sup_{x \in M} |x_n^*(x)| = 0$. Further we use the following result obtained in [2].

LEMMA. If X contains an unlimited sequence (x_n) that is equivalent to the unit basis of c_0 , then X contains a complemented copy of c_0 .

Now, we are ready to show our theorem.

THEOREM. Assume X contains a copy of c_0 . Then L_X^p , $1 \le p < \infty$, contains a complemented copy of c_0 .

PROOF. We shall construct a sequence of functions in L_X^p which is equivalent to the unit basis of c_0 and is not limited in L_X^p , so by virtue of the Lemma we will be done. Let (x_n) be a sequence in X equivalent to the unit basis of c_0 and (x_n^*) be a bounded sequence in X^* such that $x_m^*(x_n) = \delta_{mn}$. It suffices to consider the case of [0,1] with Lebesgue measure. We consider Rademacher functions r_n and define a sequence (f_n) in L_X^p by putting $f_n = r_n x_n$ and a sequence in $(L_X^p)^*$ by putting $f_n^* = r_n x_n^*$. First of all we show that (f_n) is a sequence equivalent to the unit basis of c_0 . Since (x_n) is a copy of the unit basis of c_0 , there are $h_1, h_2 \in \mathbb{R}^+$ such that, for all finite sequences $(a_i)_{i=1}^s$ of real numbers, we have

$$h_1 \max_{1 \le i \le s} |a_i| \le \left\| \sum_{i=1}^s a_i x_i \right\|_X \le h_2 \max_{1 \le i \le s} |a_i|.$$

Since $|r_i(t)| = 1$ on [0, 1] for all $i \in N$, we have

$$h_1 \max_{1 \le i \le s} |a_i| \le \left\| \sum_{i=1}^s a_i r_i(t) x_i \right\|_X \le h_2 \max_{1 \le i \le s} |a_i|, \quad t \in [0, 1].$$

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors February 14, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46B20, 46B25.

Key words and phrases. Lebesgue-Bochner function spaces, complemented copies of c_0 , limited sets.

This easily gives that

$$h_1 \max_{1 \le i \le s} |a_i| \le \left\| \sum_{i=1}^s a_i f_i \right\|_{L^p_X} \le h_2 \max_{1 \le i \le s} |a_i|,$$

i.e. (f_n) is equivalent to the unit basis of c_0 . Now, we observe that

$$f_n^*(f_n) = \int_{[0,1]} x_n^*(x_n) r_n^2(t) \, dm = 1 \quad \text{for all } n \in N.$$

So it remains only to prove that $f_n^* \xrightarrow{w^*} 0$. To this purpose take $h \in L_X^p$ and observe that $|f_n^*(h)| = |\int_{[0,1]} x_n^*(h(t))r_n(t) dm| \le ||x_n^*|| || \int_{[0,1]} h(t)r_n(t) dm||$ for all $n \in N$. Since (x_n^*) is bounded and moreover $\lim_n || \int_{[0,1]} h(t)r_n(t) dm|| = 0$, we get $\lim_n f_n^*(h) = 0$. Arbitrariness of h in L_X^p gives that $f_n^* \xrightarrow{w^*} \theta$. Our proof is complete.

The above Theorem has the following Corollary.

COROLLARY. Let X contain a copy of c_0 . Then L_X^p , $1 \le p < \infty$, is neither a Grothendieck space nor a dual space.

Finally, we want to thank Joe Diestel for suggesting a simplification of our first proof.

REFERENCES

- P. Cembranos, C(K, E) contains a complemented copy of c₀, Proc. Amer. Math. Soc. 91 (1984), 556-558.
- 2. G. Emmanuele, A note on Banach spaces containing complemented copies of c_0 .
- E. Saab and P. Saab, On complemented copies of c₀ in injective tensor products, Contemporary Math., Vol. 52, Amer. Math. Soc., Providence, R.I., 1986.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CATANIA, VIALE A. DORIA 6, CATA-NIA 95125, ITALY

Current address: Department of Mathematics, Kent State University, Kent, Ohio 44242

786